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We consider Zeeman field effects on a spin Bose-metal �SBM� phase on a two-leg triangular ladder. This
phase was found in a spin-1/2 model with ring exchanges �D. N. Sheng, O. I. Motrunich, and M. P. A. Fisher,
Phys. Rev. B 79, 205112 �2009�� and was also proposed to appear in an interacting electronic model with
longer-ranged repulsion �H.-H. Lai and O. I. Motrunich, Phys. Rev. B 81, 045105 �2010��. Using bosonization
of a spinon-gauge theory, we study the stability of the SBM phase and its properties under the field. We also
explore phases arising from potential instabilities of the SBM; in all cases, we find a gap to spin-1 excitations
while spin-nematic correlations are power law. We discuss two-dimensional analogues of these phases where
spinons can pair with their own species.
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I. INTRODUCTION

There has been much recent interest in gapless spin liq-
uids stimulated by several experimental candidates, includ-
ing two-dimensional �2D� triangular lattice based organic
compounds1–5 �-�ET�2Cu2�CN�3 and EtMe3Sb�Pd�dmit�2�2
and three-dimensional hyper-kagome material6 Na4Ir3O8.
One line of theoretical ideas considers states with a Fermi
surface of fermionic spinons.7–10 For the 2D spin liquids,
such a state arises as a good variational wavefunction7 for a
spin model with ring exchanges and is also an appealing
candidate for an electronic Hubbard model near the Mott
transition.8,11,12

Driven by the need for a controlled theoretical access to
such phases, Ref. 13 considered the Heisenberg plus ring
exchanges model14,15 on a two-leg triangular strip—so-called
zigzag chain. Using numerical and analytical approaches,
Ref. 13 found a ladder descendant of the 2D spin liquid in a
broad range of parameters and called this phase “spin Bose-
metal” �SBM�. The name refers to metal-like itinerancy
present in the spin degrees of freedom �note that there is no
electric transport to speak of in the spin-only model�. Further
work Ref. 16 studied electronic Hubbard-type models with
longer-ranged repulsion and showed that they are promising
systems to realize such an SBM phase in a Mott insulator of
electrons proximate to a two-band metallic phase on the zig-
zag chain.

This paper continues efforts to gain insights about the 2D
spin liquid from the solvable two-leg ladder example. Here
we study the SBM phase under Zeeman magnetic field while
in a separate paper we will study orbital field. One motiva-
tion comes from experiments on the 2D spin liquid materials
�-�ET�2Cu2�CN�3 and EtMe3Sb�Pd�dmit�2�2 measuring ther-
modynamic, transport, and local magnetic properties under
strong fields.1,3,5,17–19 An important question is whether the
field can induce changes in the physical state of the system.

To this end, we explore possible instabilities of the two-
leg SBM state in the Zeeman field. There have been many
studies of 2D and one-dimensional �1D� spin models under
magnetic field showing rich behaviors. For example, the
phase diagram of the J1-J2 antiferromagnetic chain with
J1 ,J2�0 in the field20–24 contains one-component and two-

component Luttinger liquids, a plateau, a phase with static
chirality order, and a phase with spin-nematic correlations. In
the spirit of such studies, we allow a large range of fields,
which could be numerically explored in spin or electronic
models realizing the SBM phase.13,16 We remark that experi-
ments on the spin liquid materials achieve only relatively
small fields—e.g., the maximum magnetization is �0.01�B
per spin. Nevertheless, some of our two-leg ladder phases
from the broader theoretical study motivate interesting 2D
states that are worth exploring.

The SBM phase on the zigzag chain can be viewed as a
Gutzwiller-projected spinon state where both ↑ and ↓ spinon
species populate two Fermi segments �cf. Fig. 1�. The pro-
jection eliminates the overall charge mode leaving three gap-
less modes. We find that this phase can, in principle, remain
stable under the Zeeman field. We also identify all possible
instabilities out of the SBM.

Loosely speaking, the instabilities correspond to pairing
of spinons separately within each species �a kind of triplet
pairing�. More precisely, the relevant interactions can be in-
terpreted as moving a “Cooper pair” from one band to the
other of the same species. Of course, there is no long-range
pairing order in the quasi-1D and in fact the dominant cor-
relations in our system need not be of “pair-type”—the
Bosonization provides the proper treatment while this lan-
guage is only for convenience.
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FIG. 1. �Color online� Single-particle spectrum in the presence
of the Zeeman field, �↑/↓�k�=−2t1 cos�k�−2t2 cos�2k��

h
2 −�,

shown for parameters t2 / t1=1 and h / t1=1 /2. Our kF-s denote right-
moving momenta ��−� ,��; with this convention, the half-filling
condition reads kF1↑+kF1↓+kF2↑+kF2↓=−�.
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It can happen that the pairing is relevant for one spinon
species but not the other. In this case the system retains two
gapless modes. Interestingly, spin-1 excitations become
gapped �i.e., transverse spin correlations are short-ranged�
while spin-2 excitations are gapless �i.e., nematic or two-
magnon correlation functions show power law�.

It can also happen that the pairing is relevant for each
spinon species. In this case the system retains only one gap-
less mode. Again, spin-1 excitations are gapped while spin-2
remain gapless. It further turns out that the system breaks
translational symmetry and has either period 2 valence bond
solid �VBS� or period 2 static chirality order.

Such thinking about pairing within the same spinon spe-
cies can be extended to 2D. Here, if we pair only one species
and not the other, we have a gap to spin-1 excitations while
at the same time we have critical spin-2 correlations and the
system retains the gapless Fermi surface for the unpaired
species. On the other hand, if we have pairing within both
spinon species, the system acquires a long-range spin-
nematic order.25

Spin-nematic phases were discovered and much discussed
recently in other interesting frustrated systems. For instance,
such phases were found in the antiferromagnetic zigzag lad-
der with easy-plane anisotropy26 and in the ferro/antiferro
zigzag ladder �J1�0,J2�0� in the Zeeman field.27–30 As for
examples in 2D, spin-nematic order was found in the frus-
trated square lattice with ferromagnetic J1�0 and antiferro-
magnetic J2�0 and ring exchanges,31 and in the triangular
lattice with ferromagnetic Heisenberg and antiferromagnetic
ring exchanges.32 Though, many details of the nematic
phases proximate to the SBM studied here are of course dif-
ferent.

The paper is organized as follows. In Sec. II, we consider
an electronic Hubbard-type model with longer-ranged repul-
sion under Zeeman magnetic field and discuss the weak-
coupling phase diagram in the two-band regime. We then
take a leap to the Mott-insulator regime, which can be
achieved from the electronic perspective by gapping out the
overall charge mode using an eight-fermion Umklapp inter-
action. In Secs. III and IV, we discuss the theory and prop-
erties of the SBM under Zeeman field, and in Sec. V we
consider possible instabilities and characterize the resulting
phases. We conclude by discussing generalizations of these
phases to 2D.

II. ELECTRONS ON A TWO-LEG ZIGZAG STRIP IN A
ZEEMAN FIELD: WEAK-COUPLING APPROACH

In this section, we consider half-filled electronic t1− t2
chain with extended repulsive interaction in the magnetic
Zeeman field. The Hamiltonian is H=H0+HZ+HV with

H0 = − �
x,	

�t1c	
†�x�c	�x + 1� + t2c	

†�x�c	�x + 2� + H.c.� ,

�1�

HZ = − h�
x

Sz�x� , �2�

HV =
1

2 �
x,x�

V�x − x��n�x�n�x�� . �3�

Here c	�x� is a fermion annihilation operator, x is a site label
on the 1D chain, and 	= ↑ ,↓ is a spin index; n�x�
�c↑

†�x�c↑�x�+c↓
†�x�c↓�x� is electron number on the site.

Throughout, electrons are at half filling. The Zeeman field
couples to electron spin Sz�x�� 1

2 �c↑
†�x�c↑�x�−c↓

†�x�c↓�x��.
In the weak-coupling approach, we assume HV
H0 ,HZ

and start with the noninteracting band structure given by
H0+HZ and illustrated in Fig. 1. In this paper, we focus on
the regime t2 / t1�0.5 and not too large Zeeman field so that
there are two occupied Fermi segments �bands� for each spin
species. The corresponding phase boundary in the t2 / t1
−h / t1 plane is shown in Fig. 2. For fields exceeding some
critical values, the second spin-↓ Fermi segment gets com-
pletely depopulated; this regime leads to a different theory
and is not considered here.

The spectrum is linearized near the Fermi points and the
electron operators are expanded in terms of continuum fields,

c	�x� = �
P,a

eiPkFa	xcPa	, �4�

with P=R /L=+ /− denoting the right/left movers and a
=1,2 denoting the two Fermi seas for each spin species, cf.
Fig. 1. There are four different Fermi velocities va	.

Using symmetry arguments, we can write down the most
general form of the four-fermion interactions which mix the
right and left moving fields

Hint = H↑ + H↓ + H↑↓, �5�

H	 = �11
	 �R1	�L1	 + �22

	 �R2	�L2	 �6�

+ �12
	 ��R1	�L2	 + �L1	�R2	� �7�
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FIG. 2. �Color online� Free-electron phase diagram in the t2 / t1

−h / t1 plane. In this paper, we focus solely on the lower region
where both spin species have two Fermi seas �bands�. For reference,
we give the magnetization Mz��n↑−n↓� / �n↑+n↓� at the transition
for several band parameters: Mcrit

z =0.32, 0.46, and 0.54 for t2 / t1

=1.0, 1.5, and 2.0.
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+ w12
	 �cR1	

† cL1	
† cL2	cR2	 + H.c.� , �8�

H↑↓ = �
a,b

�ab
↑↓��Ra↑�Lb↓ + �La↑�Rb↓� . �9�

�Interactions that do not mix right and left movers only shift
velocities and do not affect the weak-coupling treatment.�

The weak-coupling renormalization group �RG� equations
are15,33–35

�̇11
	 = −

�w12
	 �2

2�v2	

, �10�

�̇22
	 = −

�w12
	 �2

2�v1	

, �11�

�̇12
	 =

�w12
	 �2

��v1	 + v2	�
, �12�

ẇ12
	 = − � �11

	

v1	

+
�22

	

v2	

−
4�12

	

v1	 + v2	
�w12

	

2�
, �13�

�̇ab
↑↓ = 0. �14�

Here Ȯ�dO /d�, where � is logarithm of the length scale;
	= ↑ ,↓; and a ,b� 	1,2
. We see that the terms �ab

↑↓ do not
flow and the two spin species behave independently from
each other in the weak-coupling regime.

We therefore focus on one species at a time. Effectively,
this is equivalent to a two-band model of spinless fermions
in one dimensions15,33–35 in the absence of any Umklapps.
The RG Eqs. �10�–�13� have the Kosterlitz-Thouless form
and can be solved exactly. We define

y	 �
�11

	

2�v1	

+
�22

	

2�v2	

−
2�12

	

��v1	 + v2	�
. �15�

Eqs. �10�–�13� simplify,

ẏ	 = −
�v1	 + v2	�2 + 4v1	v2	

2�2v1	v2	�v1	 + v2	�2 �w12
	 �2, �16�

ẇ12
	 = − y	w12

	 . �17�

The w12
	 renormalizes to zero if the bare couplings satisfy

y	�� = 0� 
��v1	 + v2	�2 + 4v1	v2	

2�2v1	v2	�v1	 + v2	�2 �w12
	 �� = 0�� .

�18�

In this case, the two-band state of species 	 is stable and
gives two gapless modes.

On the other hand, if the condition Eq. �18� is not satis-
fied, then w12

	 runs to strong coupling. In this case, only one
gapless mode remains. To analyze this, we bosonize

cPa	 
 �a	ei��a	+P�a	� �19�

with canonically conjugate boson fields:

��a	�x�,�b��x��� = ��a	�x�,�b��x��� = 0, �20�

��a	�x�,�b��x��� = i��ab�	���x − x�� , �21�

where ��x� is the Heaviside step function. Here we use Ma-
jorana fermions �	�a	 ,�b�
=2�ab�	�� as Klein factors,
which assure that the fermion fields with different flavors
anticommute with one another.

For convenience, we introduce

�	
� �

�1	 � �2	

�2
, 	 = ↑or↓ , �22�

��+ �
�↑

+ + �↓
+

�2
=

�1↑ + �2↑ + �1↓ + �2↓
2

, �23�

��+ �
�↑

+ − �↓
+

�2
=

�1↑ + �2↑ − �1↓ − �2↓
2

, �24�

and similarly for � variables. The w12
	 term becomes

w12
	 �cR1	

† cL1	
† cL2	cR2	 + H.c.� 
 w12

	 cos�2�2�	
−� . �25�

When w12
	 is relevant and flows to large values, it pins the

difference field �	
− while the overall field �	

+ remains gapless
�as it should since the 	 electrons have an incommensurate
conserved density and there are no four-fermion Umklapps�.
In this phase, the 	-electron operator becomes gapped.
Pair-	-electron operator is gapless, and also specific particle-
hole composites are gapless with details depending on the
sign of w12

	 . We are primarily interested in repulsively inter-
acting electrons and expect the particle-hole observables to
be more prominent, although not dramatically since for too
strong repulsion the conducting state of the ↑ and ↓ electrons
is destroyed towards Mott insulator as described below. We
do not provide more detailed characterization of the conduct-
ing phases of electrons here, as we are eventually interested
in the Mott insulating regime where the ↑ and ↓ species
become strongly coupled. �The two-band spinless electron
system was considered, e.g., in Refs. 15 and 33–35, and our
analysis in Sec. IV can be readily tailored to the electronic
phases here.�

In the model with longer-ranged density-density repul-
sion, Eq. �3�, the bare couplings are

�11
	 = VQ=0 − V2kF1	

, �26�

�22
	 = VQ=0 − V2kF2	

, �27�

�12
	 = VQ=0 − VkF1	+kF2	

, �28�

w12
	 = VkF1	−kF2	

− VkF1	+kF2	
, �29�

�ab
↑↓ = VQ=0. �30�

Here VQ��x�=−�
� V�x−x��eiQ�x−x��=V−Q.

As an example, we consider the following potential:
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V�x − x�� = � U , �x − x�� = 0

�Ue−��x−x��, �x − x�� 
 1� . �31�

This was used in Ref. 16 to provide stable realizations of the
C2S2 metal and the SBM Mott insulator of electrons in zero
field. Here U is the overall energy scale and also the on-site
repulsion; dimensionless parameter � controls the relative
strength of further-neighbor interactions; and � defines the
decay rate. Applying the stability condition, Eq. �18�, we can
now determine the phase diagram in the weak-coupling ap-
proach in the regime where the kinetic energy gives four
modes.

Figure 3 provides an illustration for �=0.3 and �=0.5.
The w12

↑ interaction is relevant in the region with hash lines
at roughly 45° and the w12

↓ is relevant in the region with hash
lines at 135° with respect to the horizontal axis. There are
four distinct phases. First, when both w12

↑ and w12
↓ are irrel-

evant, we have a phase with four gapless modes, which is
connected to the C2S2 phase at h=0. �Note, however, that
we assumed HZ�HV, so the formal h→0 limit here is dif-
ferent from the weak-coupling analysis at h=0 in Refs. 16
and 36.�

Next, when w12
↑ is relevant while w12

↓ is irrelevant, we
have a phase with three gapless modes: one associated with
the ↑ electrons and two associated with the ↓ electrons. In
this phase, inserting a single ↑ electron costs a finite gap
while inserting a pair of ↑ electrons or a particle-hole com-
bination of ↑ electrons is gapless. The ↓ electrons are com-
pletely gapless.

When w12
↓ is relevant while w12

↑ is irrelevant, we have
another phase with three gapless modes, which is similar to
the preceding paragraph but with ↑ and ↓ interchanged. As
can be seen in Fig. 3, w12

↓ is always relevant when h ap-
proaches the critical value15 and the instability arises because
the v2↓ approaches zero.

Finally, for large t2 / t1, both w12
↑ and w12

↓ are relevant and
we have a phase with only two gapless modes: one associ-
ated with spin-↑ and the other with spin-↓ species. In this
case, inserting a single electron of either spin is gapped while
inserting a pair or a particle-hole combination of same-spin
electrons is gapless.

III. TRANSITION TO MOTT INSULATOR: SBM PHASE

Note that all phases accessed from the weak-coupling
analysis are conducting along the zigzag chain. Mott insulat-
ing states do not appear since there is no four-fermion Um-
klapp. The half-filled system does become insulating for suf-
ficiently strong repulsion. This can be achieved by including
a valid eight-fermion Umklapp, which is irrelevant at weak
coupling but can become relevant at intermediate to strong
coupling13,16

H8 = v8�cR1↑
† cR1↓

† cR2↑
† cR2↓

† cL1↑cL1↓cL2↑cL2↓ + H.c.�


 2v8 cos�4��+� , �32�

where ��+ is defined in Eq. �23� and describes slowly varying
electron density, �e�x�=2�x��+ /�. The density-density repul-
sion gives coarse-grained interaction Hint
VQ=0��x��+�2.
This will stiffen the ��+ field and will reduce the scaling
dimension of the Umklapp term. For sufficiently strong re-
pulsion the Umklapp becomes relevant and will grow at long
scales, pinning the ��+ and driving a metal-insulator transi-
tion. As discussed in Refs. 13 and 16, we expect that Mott
insulator corresponding to a spin model with spins residing
on sites is described by v8�0 and the pinning condition

4��+
�0� = ��mod 2�� . �33�

Such gapping out of the overall charge mode can occur
out of any of the four conducting phases discussed in Fig. 3.
When this happens out of the four-mode metal, we obtain
spin liquid Mott insulator with three gapless modes—the
spin Bose-metal. In principle, one could perform an interme-
diate coupling analysis similar to that in Ref. 16 to estimate
the strength of the repulsion needed to drive the metal-
insulator transition but we will not try this here. Below we
discuss qualitatively the stability and physical observables in
the SBM phase under the Zeeman field. We will then con-
sider instabilities of the SBM similar to the w12

	 -driven tran-
sitions out of the four-mode metal above but now with the ↑
and ↓ systems strongly coupled to form the Mott insulator.

Reference 13 also presented another route to describe the
SBM in a spin-only model by using Bosonization to analyze
slave particle gauge theory. The formalism is similar to the
electron model analysis but with electron operators c	�x� re-
placed with spinon operators f	�x� and the gauge theory con-
straint realized via an explicit mass term for ��+,
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h/t1
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ɤ=0.3; ϰ=0.5

Different Theory

(C2S2)

w12
w12

3 gapless
modes

2 gapless
modes

2 gapless charge modes
and 2 gapless spin modes

3 gapless
modes

FIG. 3. �Color online� An example of the weak-coupling phase
diagram in the electron system under the Zeeman field, using model
interactions Eq. �31� with �=0.5 and �=0.3. We focus on the region
where the kinetic energy gives four modes �cf. Figs. 1 and 2� and
find four phases: metallic phase with four gapless modes evolving
out of the C2S2 phase in zero field; phase with three gapless modes
where only the w12

↑ term is relevant and flows to strong coupling;
phase with three gapless modes where only the w12

↓ term is relevant;
and phase with two gapless modes where both the w12

↑ and w12
↓ are

relevant. The w12
↑ term is relevant in the region with hash lines at

roughly 45° and the w12
↓ -term is relevant in the region with hash

lines at 135° with respect to the horizontal axis. Note that the w12
↓

term always becomes relevant upon approaching the boundary of
the two-band structure �Ref. 15�.
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Lgauge theory = m���+ − ��+
�0��2. �34�

Loosely speaking, spinons are electrons that shed their over-
all charge once the Umklapp term H8 became relevant.
Note,13 however, that in the spin-only model, there are no
free spinons, unlike the situation in the electronic model
where we have electron excitations above the charge gap.

From now on, we will use the spinon-gauge language. To
get some quantitative example, we consider the case where
spinons do not have any interactions other than Eq. �34�, i.e.,
all residual interactions such as Eq. �5� are set to zero. Once
the ��+ field is pinned and after integrating out the ��+, we
obtain an effective action for the remaining fields
���+ ,�↑

− ,�↓
−���T and ���+ ,�↑

− ,�↓
−���T defined in Eqs.

�22�–�24�:

Leff =
1

2�
��x�

T · A · �x� + �x�
T · B · �x�� �35�

+
i

�
�x�

T · ��� . �36�

Matrix elements of A and B are,

A =�
v̄

v↑
−

�2
−

v↓
−

�2

v↑
−

�2
v↑

+ 0

−
v↓

−

�2
0 v↓

+ � ,

B

=�
v↑

+v↓
+

v̄

v↓
+v↑

−

�2v̄
−

v↑
+v↓

−

�2v̄

v↓
+v↑

−

�2v̄

�v↑
+�2 − �v↑

−�2 + v↑
+v↓

+

2v̄
−

v↑
−v↓

−

2v̄

−
v↑

+v↓
−

�2v̄
−

v↑
−v↓

−

2v̄

�v↓
+�2 − �v↓

−�2 + v↑
+v↓

+

2v̄

� ,

where

v	
� �

v1	 � v2	

2
, 	 = ↑,↓ , �37�

v̄ �
v↑

+ + v↓
+

2
=

v1↑ + v2↑ + v1↓ + v2↓
4

. �38�

Having all the matrix elements, we can numerically calculate
the scaling dimensions of the w12

	 terms in Eq. �25�.
As an illustration, Fig. 4 shows the results along a vertical

cut at t2 / t1=1 from Fig. 3 �assumed driven into the Mott
insulator as described above�. We see that in the absence of
the residual interactions the SBM remains stable under the
Zeeman field. We also note that the scaling dimensions of the
w12

↑ and w12
↓ have opposite trends, which implies that the

overall stability is reduced. Since the scaling dimension of

the w12
↑ interaction decreases with increasing field, it is likely

that this will be the first instability channel upon including
the residual interactions. This finding is similar to the weak-
coupling analysis where the ↑ system tends to become un-
stable first. We want to emphasize, however, that neglecting
the residual spinon interactions is likely a poor approxima-
tion for any realistic spin model, and any calculations in this
scheme should be taken with caution. The only precise state-
ment here is that the SBM can, in principle, remain stable
under the Zeeman field.

In Sec. V we discuss phases proximate to the SBM. Mo-
tivated by the above observations, we will consider first the
case where only the w12

↑ term becomes relevant; we will also
consider the situation where both w12

↑ and w12
↓ are relevant.

Before this, we need to describe main physical observables
in the SBM under the Zeeman field, which we will then use
to analyze the instabilities and the properties of the resulting
phases.

IV. OBSERVABLES IN THE SBM IN ZEEMAN FIELD

In the presence of the Zeeman field, the system has Stot
z

spin conservation symmetry and complex conjugation sym-
metry �C : i→−i� in the Sz basis. The system also has lattice
translation and inversion �I :x→−x� symmetries. The internal
symmetries are sufficiently reduced compared with the
SU�2�-invariant case of Ref. 13 that we need to revisit the
physical observables in the SBM.

We first consider Sz-conserving bilinears, which we will
also call “spin-0” objects,

�2kFa	
� fLa	

† fRa	, �39�

�kF1	+kF2	
�

1

2
�fL1	

† fR2	 + fL2	
† fR1	� , �40�

�kF1	+kF2	
�

1

2
�fL1	

† fR2	 − fL2	
† fR1	� , �41�
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2

2.5
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4
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�[W12]

�[W12]

h/t1

�[W]

↑

↓

FIG. 4. �Color online� Scaling dimensions ��w12
↑ � and ��w12

↓ � as
a function of h / t1 for fixed t2 / t1=1, calculated in the absence of
residual spinon interactions. In this case, the scaling dimensions
stay greater than 2 and the SBM phase remains stable under the
Zeeman field.
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�kF1	−kF2	
�

1

2
�fL1	

† fL2	 + fR2	
† fR1	� , �42�

�kF1	−kF2	
�

1

2
�fL1	

† fL2	 − fR2	
† fR1	� , �43�

�no summation over a or 	�. We define �−Q=�Q
† and �−Q

=�Q
† so that ��x� and ��x� are Hermitian operators.
The � bilinears appear, e.g., when expressing spinon hop-

ping energies while the � bilinears appear in currents. Spe-
cifically, consider a bond �x ,x+n�,

B�n��x� 
 f	
†�x�f	�x + n� + H.c., �44�

J�n��x� 
 i�f	
†�x�f	�x + n� − H.c.� , �45�

where 	=↑ or ↓ species can come with independent ampli-
tudes. Expansion in terms of the continuum fields gives, up
to real factors,

BQ
�n� 
 einQ/2�Q, �46�

JQ
�n� 
 einQ/2�Q. �47�

Note that we can view ��x� as a site-centered energy op-
erator, e.g., ��x�
B�1��x−1�+B�1��x�
B�2��x−1�, in the
sense of having the same symmetry properties. We can also
view ��x�
Sz�x� in the same sense because of the presence
of the Zeeman energy. �More generally, the symmetry prop-
erties of any operator are not changed upon multiplying by
Sz�x�.� On the other hand, the bond operator B�n��x� has the
same symmetry properties as a bond energy such as
S��x� ·S��x+n� and can be used to characterize VBS correla-
tions in the spin system.

Similarly, we can view ��x� as a site-centered current,
��x�
J�1��x−1�+J�1��x�
J�2��x−1�, and also as a scalar
chirality, ��x�
S��x−1� ·S��x��S��x+1� while J�n��x� has the
same symmetry properties as a spin current, J�n��x�

 i�S+�x�S−�x+n�−H.c.�.

Symmetry analysis shows that �Q transforms to �−Q under
either lattice inversion I or complex conjugation C while �Q
transforms to −�−Q under either I or C. We can then give an
independent argument for the relations Eqs. �46� and �47� for
Q�0,�, and can show generally that, up to complex phase
factors, such �Q and �Q cover all independent spin-0 observ-
ables for the system in the Zeeman field.

Special care is needed for Q=�. In this case, Eqs. �46�
and �47� hold only for n=even. On the other hand, B�

�n=odd� is
odd under inversion I and even under complex conjugation C
while J�

�n=odd� is even under I and odd under C. In particular,
the nearest-neighbor bond B�

�1� and J�
�1� are independent ob-

servables from ��
B�
�2� and ��
J�

�2�. In the present SBM
problem, such Q=� observables do not appear as bilinears
but appear as four-fermion terms below.

The bosonized expressions for the spin-0 bilinears are

�2kFa	
= iei���++	��++a�2�	

−�, �48�

�kF1	+kF2	
= − i�1	�2	ei���++	��+� sin��2�	

−� , �49�

�kF1	+kF2	
= �1	�2	ei���++	��+� cos��2�	

−� , �50�

�kF1	−kF2	
= − i�1	�2	ei�2�	

−
sin��2�	

−� , �51�

�kF1	−kF2	
= �1	�2	ei�2�	

−
cos��2�	

−� , �52�

where we used definitions Eqs. �22�–�24� and 	=+ /− for
spin ↑ or ↓ and a=+ /− for band 1 or 2.

To bring out the wavevector Q=� that will play an im-
portant role in the analysis of phases near the SBM, we need
to consider four-fermion terms. We find,

B�
�1�:i��kF1↑+kF2↑

�kF1↓+kF2↓
− H.c.�
 �53�


�̂ sin��2�↑
−�sin��2�↓

−�sin�2��+�; �54�

i��kF1↑+kF2↑
�kF1↓+kF2↓

− H.c.�
 �55�


�̂ cos��2�↑
−�cos��2�↓

−�sin�2��+�; �56�

and also

��:�kF1↑+kF2↑
�kF1↓+kF2↓

+ H.c.
 �57�


�̂ sin��2�↑
−�cos��2�↓

−�sin�2��+�; �58�

�kF1↑+kF2↑
�kF1↓+kF2↓

+ H.c.
 �59�


�̂ cos��2�↑
−�sin��2�↓

−�sin�2��+� . �60�

Here �̂��1↑�1↓�2↑�2↓. Note that we have only listed ob-
servables containing sin�2��+�. The other independent spin-0
objects �� and J�

�1� contain cos�2��+� and vanish because of
the pinning condition Eq. �33�.

Having discussed Sz-conserving observables, we can simi-
larly consider Sz-raising observables. We will call objects
corresponding to �Sz=1 or 2 as “spin-1” or “spin-2,” respec-
tively. We have spin-1 bilinears,

S−PkFa↑+P�kFb↓

+ � fPa↑
† fP�b↓. �61�

Generically, these all carry different momenta. We can
readily write bosonized expressions. For reference, we give
the main ones that contain oppositely moving fields

SkFa↑+kFb↓
+ = �a↑�b↓e

−i���++�1/�2��a�↑
−−b�↓

−�� � ei���++�1/�2��a�↑
−+b�↓

−��,

�62�

where we used convention a ,b=+ /− for band 1 or 2. We can
generally argue that at Q�0,�, objects SQ

+ that transform
like Fourier modes of the S+�x� operator cover, up to com-
plex phases, all distinct spin-1 observables. In the present
SBM system, we do not find any interesting spin-1 observ-
ables at Q=0,�.

Since we will encounter phases where S+ is gapped, we
also need to consider �Sz=2 observables, i.e., some kind of
“magnon pair” creation operators. Because of the hard spin
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condition, we define them on bonds �x ,x+n�,

P+,�n��x� � S+�x�S+�x + n� �63�


 f↑
†�x�f↑

†�x + n�f↓�x + n�f↓�x� . �64�

The last line can be expanded in terms of the continuum
fields and organized as follows. For 	 species, a “pair” op-
erator f	

†�x�f	
†�x+n� contains zero-momentum contributions

fRa	
† fLa	

† , a=1 or 2; ��kF1	+kF2	� momentum contributions
fP1	

† fP2	
† , P=L /R; and ��kF1	−kF2	� contributions

fP1	
† f−P2	

† . Multiplying the pair creation operator for ↑ spe-
cies and pair destruction operator for ↓ species, we obtain
contributions to P+ carrying combinations of the above mo-
menta.

We can argue on general symmetry grounds that, up to
complex phases, there is a single independent spin-2 object
at Q�0,�. On the other hand, at Q=� there are two inde-
pendent objects that transform differently under lattice inver-
sion; they can be realized by P�

+,�n=even� and P�
+,�n=odd�, respec-

tively. At Q=0, we consider only objects PQ=0
+,�n� which have

the same symmetry properties for any n.
In the present SBM problem, the main spin-2 observables

occur precisely at Q=0,�, and we give bosonized expres-
sions only for these. For Q=0, there are four possible terms

PQ=0
+,�n�:fRa↑

† fLa↑
† fLb↓fRb↓ 
 e−i�2��++�2�a�↑

−−b�↓
−�� �65�

with independent a ,b=+ /− corresponding to bands 1 or 2.
For Q=� we find

PQ=�
+,�n� 
 fR1↑

† fR2↑
† fL2↓fL1↓e

i�n/2 + fL1↑
† fL2↑

† fR2↓fR1↓e
−i�n/2


 �̂e−i2��+ sin�2��+ +
�

2
�n − 1�� . �66�

Because of the pinning condition on the ��+, only the
PQ=�

+,�n=odd� are nonzero, and we can use the nearest-neighbor
magnon pair operator P+,�1� as the main representative.

V. NEARBY PHASES OUT OF THE SBM IN THE FIELD

We now consider what happens when either w12
↑ or w12

↓

from Eq. �25� or both become relevant.

A. Phases when w12
_ is relevant

Let us start with the case when the w12
↑ term is relevant

while w12
↓ is irrelevant. The field �↑

− is pinned while fields �↓
−

and ��+ remain gapless, so we have two gapless modes.
There is no static order. We summarize characteristic power-
law observables in Table I and discuss them in turn.

First, all observables �Q and �Q in Eqs. �48�–�52� con-
structed out of the f↓ fields show power law. On the other
hand, such observables constructed out of the f↑ fields that
contain �↑

− become short-ranged once we pin the conjugate
�↑

−; thus, only Q=kF1↑+kF2↑ can remain power law. There
are two cases depending on the sign of w12

↑ :

w12
↑ � 0:�↑

− =
�2n + 1��

2�2
, n � Z , �67�

�kF1↑+kF2↑

 ei��+, �kF1↑+kF2↑

= 0; �68�

w12
↑ � 0:�↑

− =
2n�

2�2
, n � Z , �69�

�kF1↑+kF2↑

 ei��+, �kF1↑+kF2↑

= 0. �70�

Next, note that all spin-1 observables SQ
+ become short-

ranged since they all contain the wildly fluctuating field �↑
−.

Schematically, the individual f↑ become gapped because of
their “pairing.” On the other hand, spin-2 observables con-
tain pairs of f↑ and can remain gapless. Explicitly, after pin-
ning the �↑

−, we have for the dominant correlations at Q=0
and �

PQ=0
+ 
 e−i2��+e�i�2�↓

−
, �71�

PQ=�
+,�1� 
 e−i2��+. �72�

The gaplessness of the ��+ is required since Stot
z is con-

served and incommensurate with the lattice. We can map the
spin system to hard-core bosons,29 and in the present case
single boson excitations are gapped while pair boson excita-
tions are gapless and created by ei2��+. . .. In the “particle-
hole” sector, we have strong “density” or “current” correla-
tions, Eqs. �68� and �70�, at wavelengths that can be related
to typical separations between boson pairs, and such ei��+

contribution is generally expected in a Luttinger liquid of
pairs. Thus, the resulting state has spin-nematic power-law
correlations as well as density or current power-law correla-
tions. Which one is dominant depends on the scaling dimen-
sions of ei2��+ versus ei��+. The scaling dimensions would

TABLE I. Summary of the main observables when w12
↑ term is relevant and pins �↑

−. Critical wavevectors
Q for the magnon-pair creation operator are obtained by combining any of q↑= 	0, � �kF1↑+kF2↑�
 with any
of q↓= 	0, � �kF1↓+kF2↓� , � �kF1↓−kF2↓�
, Q=q↑+q↓; the most important ones are Q=0 and �.

Pinned �↑
−: common power-law order for either sign of w12

↑

��2kFa↓
���kF1↓+kF2↓�; ���kF1↓+kF2↓� ���kF1↓−kF2↓�; ���kF1↓−kF2↓� B�

�1�; �� P	Q

+

Distinct power-law correlations

w12
↑ �0: ���kF1↑+kF2↑�

w12
↑ �0: ���kF1↑+kF2↑�
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need to be calculated numerically since the ��+ and �↓
− mix

in general; we do not attempt such quantitative estimates
here.

Having discussed observables controlled by the gapless
�+ part, let us finally mention that B�

�1� and �� directly detect
the gapless �↓

− field, cf. Eqs. �53�–�60�. In the phase dis-
cussed in this section they have the same power-law decays.

We have considered the case when only w12
↑ becomes rel-

evant. The case when only w12
↓ becomes relevant can be

treated similarly by interchanging ↑ and ↓.

B. Phases when both w12
_ and w12

` are relevant

Let us now discuss the phases out of the SBM when both
w12

↑ and w12
↓ terms get relevant. Once the couplings flow to

large values, both variables �↑
− and �↓

− will be pinned so as to
minimize the energy. There are four possible situations de-
pending on the signs of the w12

↑ and w12
↓ .

In all cases, we find that the translational symmetry is
broken by either a static order in B� �corresponding to
period-2 valence bond solid� or �� �corresponding to
period-2 chirality order�. Coexisting with this, we have one
gapless mode, namely, the overall spin mode “�+,” which
must remain gapless as long as the magnetization density is
incommensurate with the lattice. Similarly to the case with
one relevant coupling, spin-1 observables are gapped. Spin-2
observables are gapless, with the dominant contributions

PQ=0
+ 
 PQ=�

+ 
 e−i2��+. �73�

�Note that the original wavevectors Q=0 and � are not dis-
tinguishable once we have the period-2 static orders.� To-
gether with such spin-nematic observables, we also have
spin-0 observables of the �-or �-type depending on the pin-
ning details, with the wavevectors ��kF1	+kF2	� which sat-
isfy kF1↑+kF2↑=−�kF1↓+kF2↓�−�.

Below, we consider four different pinning situations in
more details. The main features in each case are summarized
in Table II.

1. w12
_ �0, w12

` �0

The pinning conditions for fields �↑
− and �↓

− are

�↑
− =

�2n + 1��
2�2

, �↓
− =

�2m + 1��
2�2

, n,m � Z . �74�

In this case, B�
�1� obtains an expectation value while ��=0.

Thus we expect to see period-2 VBS order as illustrated in
Fig. 5. We also have power-law correlations in

�kF1↑+kF2↑

 �−kF1↓−kF2↓


 ei��+ �75�

while �kF1	+kF2	
=0. Note that because of the relation Eq. �53�

�in the sense that i��kF1↑+kF2↑
�kF1↓+kF2↓

−H.c.� has the same
symmetry properties as B�

�1��, once the system develops static
order in B�

�1�, the �kF1↑+kF2↑
and �−kF1↓−kF2↓

=�kF1↓+kF2↓
† are no

longer independent. Appropriately, the wavevectors kF1↑
+kF2↑ and −kF1↓−kF2↓ differ by � and also become con-
nected.

2. w12
_ �0, w12

` �0

Here, the pinning conditions are

�↑
− =

2n�

2�2
, �↓

− =
2m�

2�2
, n,m � Z . �76�

Again, B�
�1� obtains an expectation value while ��=0. How-

ever, here we have power-law correlations in

�kF1↑+kF2↑

 �−kF1↓−kF2↓


 ei��+ �77�

while �kF1	+kF2	
=0. Similar to the discussion in the preceding

case and using relation Eq. �55�, �kF1↑+kF2↑
and �−kF1↓−kF2↓

are
not independent observables in the presence of the static or-
der in B�

�1�.

3. w12
_ �0, w12

` �0

In this case, the pinning conditions are

�↑
− =

�2n + 1��
2�2

, �↓
− =

2m�

2�2
, n,m � Z . �78�

In this phase, �� obtains an expectation value while B�
�1�=0.

Thus we expect to see period-2 chirality order as illustrated
in Fig. 6. We also have power-law correlations in

�kF1↑+kF2↑

 �−kF1↓−kF2↓


 ei��+ �79�

while �kF1↑+kF2↑
=�−kF1↓−kF2↓

=0. By using Eq. �57�, we can
understand the equivalence of the two observables �kF1↑+kF2↑

TABLE II. Summary of the cases when both w12
↑ and w12

↓ terms
are relevant. For w12

↑ w12
↓ �0 we have period-2 VBS order while for

w12
↑ w12

↓ �0 we have period-2 chirality order. In all cases, coexisting
with such static order, we have power-law correlations in the spin-2
�magnon pair� observable P+ and in the specific � /� observables.

w12
↑ w12

↓ Static order Power-law correlations

+ + B�
�1� ���kF1	+kF2	� P	Q


+

− − B�
�1� ���kF1	+kF2	� P	Q


+

+ − �� ���kF1↑+kF2↑�; ���kF1↓+kF2↓� P	Q

+

− + �� ���kF1↓+kF2↓�; ���kF1↑+kF2↑� P	Q

+

FIG. 5. Picture of the valence bond solid order when B�
�1� gains

an expectation value. Top: 1D chain view. Bottom: the same in
2-leg ladder view. Coexisting with the static order, we also have
spin-nematic power-law correlations and power law in either � or �
channels �these properties are not depicted in any way�.
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and �−kF1↓−kF2↓
once there is the static order in ��.

4. w12
_ �0, w12

` �0

In this case, the pinning conditions are

�↑
− =

2n�

2�2
, �↓

− =
�2m + 1��

2�2
, n,m � Z . �80�

�� obtains an expectation value while B�
�1�=0. We also have

power-law correlations in

�kF1↑+kF2↑

 �−kF1↓−kF2↓


 ei��+ �81�

while �kF1↑+kF2↑
=�−kF1↓−kF2↓

=0. The two observables
�kF1↑+kF2↑

and �−kF1↓−kF2↓
become related because of Eq. �59�

and the static order in ��.
This completes our discussion of the phases out of the

SBM. We cannot tell which of the different cases are more
likely in particular microscopic models. Also, the power-law
correlation exponents depend on the unknown Luttinger pa-
rameter g�+ of the “�+” field, and we cannot tell whether
spin-2 or spin-0 observables dominate �their scaling dimen-
sions are 1 /g�+ and g�+ /4, respectively�. However, we have
developed a qualitative understanding of the phases and ob-
servables needed to identify them, which we hope will be
useful in numerical studies of models realizing the SBM
phase.

VI. DISCUSSION

In this paper, we studied instabilities of the two-leg SBM
under the Zeeman magnetic field. The instabilities are driven
by the w12

	 interactions, Eq. �8�, and we analyzed possible
outcomes using Bosonization. In all cases, we found a gap to
spin-1 excitations while spin-nematic �two-magnon� correla-
tions are power law. Loosely speaking, this appears because
of some pairing of spinons while the precise characterization
is obtained by analyzing all physical observables.

Here we want to discuss consequences if such spinon
pairing were to occur in a 2D spin liquid under the Zeeman
field. At present, we do not have any energetics justification
under which circumstances this may happen and whether this
applies to the candidate spin liquid materials. However, the
resulting states are quite interesting on their own and perhaps

such phases may occur in some other 2D systems �several
papers37,38 considered mechanisms for spinon pairing in zero
field�.

First of all, the analog of the stable SBM phase in Sec. III
has gapless Fermi surfaces for both ↑ and ↓ spinon species,
with somewhat different kF↑ and kF↓. In the organic
�-�ET�2Cu2�CN�3 and EtMe3Sb�Pd�dmit�2�2 materials, we
estimate �n↑−n↓� / �n↑+n↓��0.02 under laboratory fields, so
the difference between the two Fermi surfaces is small. In
mean field, the spin correlations are

�S+�r�S−�0��mf 
 −

cos��kF↑ + kF↓� · r +
�

2
�

�r�3
�82�

−
cos��kF↑ − kF↓� · r�

�r�3
, �83�

��Sz�r��Sz�0��mf 
 − �
	=↑,↓

1 + cos�2kF	 · r +
�

2
�

�r�3
�84�

while gauge fluctuations are expected to enhance the kF↑
+kF↓ and 2kF	 parts,39 similarly to the ladder case.13

Next, we want to discuss the analog of the situation in
Sec. V A, where there is pairing in one spinon species �say,
f↑� and no pairing in the other species. Note that the pairing
must be odd-wave since it is within one fermion type. We
will not consider any energetics selection of the pairing and
just mention possibilities such as p-wave �px+ ipy� or f wave
that can be nicely placed on the triangular lattice.

The properties of the resulting phase are as follows. The
f↓ species are gapless with Fermi surface, so we expect
metal-like specific heat C=�T; note that this is the full result
since the gauge field is Higgsed out by the f↑ pairing. We
also expect constant spin susceptibility at T→0 since both f↑
and f↓ systems are compressible, the former due to the pair
condensate and the latter by virtue of finite density of states
at the Fermi level. Because of the f↓ Fermi surface, we ex-
pect �Sz�r�Sz�0�� to show 2kF↓ oscillations with 1 /r3 power
law. On the other hand, �S+�r�S−�0�� will show either a full
gap if the f↑ pairing is fully gapped as in the case of px
+ ipy pairing, or a pseudogap if the f↑ pairing has gapless
parts as in the case of f-wave pairing. Note that this does not
contradict the finite susceptibility since the f↑-pair conden-
sate can readily accommodate �N↑= �2 changes. Related to
this, spin-nematic correlations are gapless and show 1 /r3

power law at zero wavevector �in the mean-field calculation�.
Interestingly, the gap or pseudogap to spin-1 operators would
have consequences for NMR experiments done with 1H or
13C that are both spin-1

2 nuclei and relax only by spin-1
excitations. From such measurements, this phase might ap-
pear gapped but it actually has a gapless Fermi surface of
one species. �In the context of 1D models exhibiting spin-
nematic phases, consequences for the NMR relaxation rate
were discussed in detail, e.g., in Ref. 30.�

Finally, let us consider the analog of the situation in Sec.
V B, where both f↑ and f↓ become paired, with possibly dif-

� � � � � � � �� � � � � � �

FIG. 6. �Color online� Picture of the static period-2 order in spin
chirality when �� gains an expectation value. Since J�

�2�
��, we
have static staggered second-neighbor bond currents in the chain
view �top figure�. In the ladder view �bottom figure�, we have op-
positely oriented spin currents flowing on the two legs. Coexisting
with the static order, we also have spin-nematic power-law correla-
tions and power laws in � /� channels �these properties are not
depicted in any way�.
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ferent pairing �rr�
↑ , �rr�

↓ . In this case, Sz and S+ correlations
are both gapped �or pseudogapped� while spin-nematic cor-
relation shows long-range order. Specifically, in the mean
field,

�S+�r�S+�r���mf = �rr�
↑�

�rr�
↓ . �85�

Note that this nematic order resides on the bonds of the lat-
tice and details depend on the �↑ and �↓. For example, if we
take �↑ and �↓ to have the same pattern, this will give fer-
ronematic state. Curiously, if we take �↑
 px+ ipy and �↓


 px− ipy, we get q=0 antiferromagnetic nematic order on

the Kagome lattice formed by the bonds of the triangular
lattice. We emphasize that we have not discussed any ener-
getics that may be selecting among such states. Whether
something like this can appear in realistic models on the
triangular lattice is an interesting open question.

ACKNOWLEDGMENTS

We would like to thank C.-C. Chen, M. P. A. Fisher, and
P. A. Lee for useful discussions. This research is supported
by the National Science Foundation through Grant No.
DMR-0907145 and by the A. P. Sloan Foundation.

1 Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G.
Saito, Phys. Rev. Lett. 91, 107001 �2003�.

2 Y. Kurosaki, Y. Shimizu, K. Miyagawa, K. Kanoda, and G.
Saito, Phys. Rev. Lett. 95, 177001 �2005�.

3 S. Yamashita, Y. Nakazawa, M. Oguni, Y. Oshima, H. Nojiri, Y.
Shimizu, K. Miyagawa, and K. Kanoda, Nat. Phys. 4, 459
�2008�.

4 M. Yamashita, N. Nakata, Y. Kasahara, T. Sasaki, N. Yoneyama,
N. Kobayashi, S. Fujimoto, T. Shibauchi, and Y. Matsuda, Nat.
Phys. 5, 44 �2009�.

5 T. Itou, A. Oyamada, S. Maegawa, M. Tamura, and R. Kato,
Phys. Rev. B 77, 104413 �2008�.

6 Y. Okamoto, M. Nohara, H. Aruga-Katori, and H. Takagi, Phys.
Rev. Lett. 99, 137207 �2007�.

7 O. I. Motrunich, Phys. Rev. B 72, 045105 �2005�.
8 S.-S. Lee and P. A. Lee, Phys. Rev. Lett. 95, 036403 �2005�.
9 Y. Zhou, P. A. Lee, T.-K. Ng, and F.-C. Zhang, Phys. Rev. Lett.

101, 197201 �2008�.
10 M. J. Lawler, A. Paramekanti, Y. B. Kim, and L. Balents, Phys.

Rev. Lett. 101, 197202 �2008�.
11 T. Senthil, Phys. Rev. B 78, 045109 �2008�.
12 D. Podolsky, A. Paramekanti, Y. B. Kim, and T. Senthil, Phys.

Rev. Lett. 102, 186401 �2009�.
13 D. N. Sheng, O. I. Motrunich, and M. P. A. Fisher, Phys. Rev. B

79, 205112 �2009�.
14 A. D. Klironomos, J. S. Meyer, T. Hikihara, and K. A. Matveev,

Phys. Rev. B 76, 075302 �2007�.
15 J. S. Meyer and K. A. Matveev, J. Phys.: Condens. Matter 21,

023203 �2009�.
16 H.-H. Lai and O. I. Motrunich, Phys. Rev. B 81, 045105 �2010�.
17 A. Kawamoto, Y. Honma, and K. I. Kumagai, Phys. Rev. B 70,

060510�R� �2004�.
18 Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G.

Saito, Phys. Rev. B 73, 140407 �2006�.
19 A. Kawamoto, Y. Honma, K. I. Kumagai, N. Matsunaga, and K.

Nomura, Phys. Rev. B 74, 212508 �2006�.
20 K. Okunishi, Y. Hieida, and Y. Akutsu, Phys. Rev. B 60, R6953

�1999�.
21 K. Okunishi and T. Tonegawa, J. Phys. Soc. Jpn. 72, 479 �2003�.
22 I. P. McCulloch, R. Kube, M. Kurz, A. Kleine, U. Schollwock,

and A. K. Kolezhuk, Phys. Rev. B 77, 094404 �2008�.
23 K. Okunishi, J. Phys. Soc. Jpn. 77, 114004 �2008�.
24 T. Hikihara, T. Momoi, A. Furusaki, and H. Kawamura, Phys.

Rev. B 81, 224433 �2010�.
25 R. Shindou and T. Momoi, Phys. Rev. B 80, 064410 �2009�.
26 A. A. Nersesyan, A. O. Gogolin, and F. H. L. Essler, Phys. Rev.

Lett. 81, 910 �1998�.
27 A. V. Chubukov, Phys. Rev. B 44, 4693 �1991�.
28 T. Vekua, A. Honecker, H.-J. Mikeska, and F. Heidrich-Meisner,

Phys. Rev. B 76, 174420 �2007�.
29 T. Hikihara, L. Kecke, T. Momoi, and A. Furusaki, Phys. Rev. B

78, 144404 �2008�.
30 M. Sato, T. Momoi, and A. Furusaki, Phys. Rev. B 79, 060406

�2009�.
31 N. Shannon, T. Momoi, and P. Sindzingre, Phys. Rev. Lett. 96,

027213 �2006�.
32 T. Momoi, P. Sindzingre, and N. Shannon, Phys. Rev. Lett. 97,

257204 �2006�.
33 K. A. Muttalib and V. J. Emery, Phys. Rev. Lett. 57, 1370

�1986�.
34 M. Fabrizio, Phys. Rev. B 48, 15838 �1993�.
35 U. Ledermann and K. Le Hur, Phys. Rev. B 61, 2497 �2000�.
36 K. Louis, J. V. Alvarez, and C. Gros, Phys. Rev. B 64, 113106

�2001�.
37 V. Galitski and Y. B. Kim, Phys. Rev. Lett. 99, 266403 �2007�.
38 T. Grover, N. Trivedi, T. Senthil, and P. A. Lee, arXiv:0907.1710

�unpublished�.
39 B. L. Altshuler, L. B. Ioffe, and A. J. Millis, Phys. Rev. B 50,

14048 �1994�.

HSIN-HUA LAI AND OLEXEI I. MOTRUNICH PHYSICAL REVIEW B 82, 125116 �2010�

125116-10

http://dx.doi.org/10.1103/PhysRevLett.91.107001
http://dx.doi.org/10.1103/PhysRevLett.95.177001
http://dx.doi.org/10.1038/nphys942
http://dx.doi.org/10.1038/nphys942
http://dx.doi.org/10.1038/nphys1134
http://dx.doi.org/10.1038/nphys1134
http://dx.doi.org/10.1103/PhysRevB.77.104413
http://dx.doi.org/10.1103/PhysRevLett.99.137207
http://dx.doi.org/10.1103/PhysRevLett.99.137207
http://dx.doi.org/10.1103/PhysRevB.72.045105
http://dx.doi.org/10.1103/PhysRevLett.95.036403
http://dx.doi.org/10.1103/PhysRevLett.101.197201
http://dx.doi.org/10.1103/PhysRevLett.101.197201
http://dx.doi.org/10.1103/PhysRevLett.101.197202
http://dx.doi.org/10.1103/PhysRevLett.101.197202
http://dx.doi.org/10.1103/PhysRevB.78.045109
http://dx.doi.org/10.1103/PhysRevLett.102.186401
http://dx.doi.org/10.1103/PhysRevLett.102.186401
http://dx.doi.org/10.1103/PhysRevB.79.205112
http://dx.doi.org/10.1103/PhysRevB.79.205112
http://dx.doi.org/10.1103/PhysRevB.76.075302
http://dx.doi.org/10.1088/0953-8984/21/2/023203
http://dx.doi.org/10.1088/0953-8984/21/2/023203
http://dx.doi.org/10.1103/PhysRevB.81.045105
http://dx.doi.org/10.1103/PhysRevB.70.060510
http://dx.doi.org/10.1103/PhysRevB.70.060510
http://dx.doi.org/10.1103/PhysRevB.73.140407
http://dx.doi.org/10.1103/PhysRevB.74.212508
http://dx.doi.org/10.1103/PhysRevB.60.R6953
http://dx.doi.org/10.1103/PhysRevB.60.R6953
http://dx.doi.org/10.1143/JPSJ.72.479
http://dx.doi.org/10.1103/PhysRevB.77.094404
http://dx.doi.org/10.1143/JPSJ.77.114004
http://dx.doi.org/10.1103/PhysRevB.81.224433
http://dx.doi.org/10.1103/PhysRevB.81.224433
http://dx.doi.org/10.1103/PhysRevB.80.064410
http://dx.doi.org/10.1103/PhysRevLett.81.910
http://dx.doi.org/10.1103/PhysRevLett.81.910
http://dx.doi.org/10.1103/PhysRevB.44.4693
http://dx.doi.org/10.1103/PhysRevB.76.174420
http://dx.doi.org/10.1103/PhysRevB.78.144404
http://dx.doi.org/10.1103/PhysRevB.78.144404
http://dx.doi.org/10.1103/PhysRevB.79.060406
http://dx.doi.org/10.1103/PhysRevB.79.060406
http://dx.doi.org/10.1103/PhysRevLett.96.027213
http://dx.doi.org/10.1103/PhysRevLett.96.027213
http://dx.doi.org/10.1103/PhysRevLett.97.257204
http://dx.doi.org/10.1103/PhysRevLett.97.257204
http://dx.doi.org/10.1103/PhysRevLett.57.1370
http://dx.doi.org/10.1103/PhysRevLett.57.1370
http://dx.doi.org/10.1103/PhysRevB.48.15838
http://dx.doi.org/10.1103/PhysRevB.61.2497
http://dx.doi.org/10.1103/PhysRevB.64.113106
http://dx.doi.org/10.1103/PhysRevB.64.113106
http://dx.doi.org/10.1103/PhysRevLett.99.266403
http://arXiv.org/abs/arXiv:0907.1710
http://dx.doi.org/10.1103/PhysRevB.50.14048
http://dx.doi.org/10.1103/PhysRevB.50.14048

